
SPACE RESEARCH COORDINATION CENTER

_/_/_iUNIVEltSli

;U,_

A STOCHASTIC MODEL STUDY OF THE

MOVEMENT OF SOLID PARTICLES

BY

CHAO--LIN CHIU

K. C. CHEN

CIVIL ENGINEERING DEPARTMENT

GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC)

Microfiche (MF)

SRCC REPORT NO. 32

ff 653 July 85

UNIVERSITY OF PITTSBURGH

PITTSBURGH, PENNSYLVANIA

31 AUGUST 1966

(THR_

(CODE_
(JTEGORY)



The Space Research Coordination Center, established in May, 1963, has the

following functions: (1) i t administers predoctoral and postdoctoral fellowships i n

space-related science and engineering programs; (2) it makes available, on application

and after review, allocations to assist new faculty members in the Division of the

Natural Sciences or the School of Engineering to initiate research programs or to per-

mit established faculty members to do preliminary wonk on research ideas of a novel

character; (3) in the Division of the Natural Sciences it makes an annual allocation of

funds to the interdisciplinary Laboratory for AtmOsl_eric and Space Sciences; (4) in

the School of Engineering it makes a similar allocation of funds to the Department of

Metallurgical and Materials Engineering; and (5)in concert with the University's Know-

ledge Availability Systems Center, it seeks to assist in the orderly transfer of new

space-generated knowledge in industrial application. The Center also issues periodic

reports of space-oriented research and a comprehensive annual report.

The Center is supported by an Institutional Grant (NsG-416) from the National

Aeronautics and Space Administration, strongly supplemented by grants from The

A. W. Mellon Educational and Charitable Trust, the Maurice Falk Medical Fund, the

Richard King Mellon Foundation and the Sarah Mellon Scaife Foundation. Much of

the work described in SRCC reports is financed by other grants, made to individual

faculty members.



A STOCHASTIC MODEL S_DY OF

THE MOVEMENT OF SOLID PARTICLES

Chae-Lin Chiu

K. C. Chen

Civil Engineering Department

University of Pittsburgh

August 1966



!

J

AC_NO'_./LEDG_NT

The writers are thankful to the Computing Center of the Uni-

versity of Pittsburgh for the extensive use of the computer faci-

lities.

This research received partial support from NASA Grant(/_-Z.

t

I

I

I

I
I

I



I

I

I

I

I

I°

TABLE OF CONTENTS

l_age

INTRODUCTION .............................,.....o°I

XX, RANDOM WALK AND MONTE 0ARL0 "'''''''''''''o'......5

A° Random Walk............ .... -...-.-.-..,....-.-5

Bo Random Walk Model of the Transpor_ of

Suspended Solid P_ticles .... ....-..--.......9

0o Monte 0arlo Method . ......... ..............°..12

iIX. STOCHASTIC MODEL OF THE TRANSPORT 0F

SOLID PARTICLES ...... .................,.........IA

A. Random Walk of a Particle ....................14

B. Mean Oonvectiv_ Plnw ...... ....................16

C. Resull_ant StonbaRtg- Model ...................19

D. Group Motion of Solid Particles ..............22

IV. Digital Oomputer Bimulatlon .....................23

A. Computer Program .. ...... .........,...o.......23

B. Generation of Random Numbers..................2A

0o Flow Field.... ....... ........o.....,..........25

D. Result of Computer Simulation ................26

i. The Path of a Slng_e Partlole ...........6.26

2. Isopleth Patterns..........................31

V. OONCLUSION .......... ...... .......................44

VX. LIST 0F REFERENCES ..............................46

_I_U)IX X, O0M2UTER FLOW CHARTS ,....,.....,...4_



Q

LIST _ I FIOU:ES

iv

f

Pap

Secondary C_rents in a Corner of a Straight

Rec_ Channel................................. o.....h

Schematic) DJ_4Wam of RandomWaik Model.o,.,o.,o°.oo,oo.e..9

Diagram of P_dom Walk of a Particle (Spherical

Coordinate System)........................................14

3.2 Coordinate Systemn..,.......,...,.....,.,,..,.,,...,,..,,ol6

t,.z S hemti Grid Point...................24
4°2 The Path o£ a Single Particle.......,..,....°.°.°....°....27

4.4

4.5

_.6

4.7

4.8

4.9

h.lO

4,11

The Path of a Single Particle in Y_- XzPlane.°...,°...,,..28

The Path of a Single Particle in XI- XaPlane,..,.......°..29

The Path of a Single Particle in Xz- X_Ple_.,.,,......**,30

Tsorleth Pattern of the Cloud at t-20 &

_<x,¢ 74.... • ............................................._

Isopleth Pattern o£ the Cloud at t-50 &

z58_x,,: z78................................................33

Isopleth Pattern of the Cloud at t-80 & :

• °°°°e@°o°°ooo'ooe°oe@ooeoeo°o@@o@Q@@@@@°°°°°@°@@@

Isopleth Pattern of the Cloud at t-lO0 &

329<_< 3_9...°°°,.°°..................,.,°,°°°°°.°°.0.0.,,35

7sopleth Pa_te_'n of the Cloud at t=lSO & .

°@°°@@@@$$0O0O@0°°$°@0°@@0@@°$$$@@0@@@@@@°°@,@@@@

_zop_hh Pattern st the Cloud at t,,'200 &

T10.,.......,......,.........,..,.,....,,,,........37

• • °

/



Fi_8

4._2 Isopleth Pattern of the Cloud at t--_50 &

B_,¢ 88o................................................_

b,13 Isopleth Pattern of the Cloud at t-300 &

iC_< lob3......., o.... o...........................,..,.39

b.l_ The Mass Center of the Cloud..........................,...hO

4.1_ Statistical P_amete_8 Discribing the Spread

of the Cloud,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,_

h.16 The _ Spreads of the Cloud in the Lengitudinal

Dil_tiomeeeeeee ,eeeeooeee,ee, eeeeeeeeee eeeeeeeeoeeoeeeeo_

\

F

I

t
I

t

t

"e

I

• - • • ,.

/



I. IJTRODUCTION

I

"Stochastic Pro_-R_" is a time depend_nt random

phenomenon described by a probability distribution law. I ,

In seneral, physical phenomen_ can be o3aestfied into de-

terministic, random and hybrid _roceeeese However, there

_ j,

are few Physical phenomena which are pure deterninietie
u

or pure random processes. Instead, most of physical phase.-

deterninlstio and random processes.

I

Random walk is a kind of Marker chain which 5J1 _n

18 a particular type of s_ochastto prooesee The random

walk model was first used by Karl Pearson 7 in 1905 in a

study of random motion of s particle in space, Since then, it

has been used by a greet n_mber cf investigators. The ran-

dom walk process, as described by Pearson, can very closely _
0reproduce the dif_uelon process. In his book, Feller 8 states,

I i
"If the individual steps of a random walk are made extremely

" small end secure in rapid succession, then at the limit "

' the process will appear as a continuous motion. The point

,

!

of interest to that in passing to this limit the formulae

(d-_sor!bl_ng the motion) re_-__n &_eaning____! and.agree -_ith

physically SiKnifioant formulae of diffusion theory.....

This explain8 partly why the random walk model, despite

its orudeneeet, describe8 d_ffusion proOese reasonably well n

• , . + . . . "

. . - • , . , ,, .

. ..... ,_. . - _-...: --" . , ..
. .,+ . . - . ',• ,', .. -" _ .

(
"Ell J an* . • ......



tlon.

Random walk provides a solution to a oonttnum equa-

Smoluehowskt 2 has applied it to the solution of the

one-dimensional dtffuelon equation. Another example le

[niEhting'a_solution of the three-dimensional turbulent

diffusion from an instantaneous point source near the boun-
p

dary in a unifornvelooity field.

The random walk model can be employed in solvin 8

e

differential equa_ione of the continum case by a :ethod of

random sampling. Sometimes, the method of random sampling

X

|i

•, : . i

is more effective than" the analytical or numerical method.

The method of random sampling, which is called XNonte Oarlo m

method, was first suggested by Fermi 4 for studying the ,+++_+_

Sohrodinger equation. • typical example of the appltoatAon

of this method to fluid mechanics Is the solution of the

i .

laplace equations

Random walk can also be used to simulate physical

processes. In a direct sin_lation the features Of a pro-

cess are reproduced by imitating the behaviors of appropriate

discrete entities, ouch as particles. This.approach has

proved effective in the studies of the diffusion and decay

of nuoleLr partioleeo 6 Per slmulatin8 a sl_eifie problem,

the only requLrement So to build a dilorete model that i_Ivel

,.+
• ++

J , •

, I...., r, •

_++- !

• :..+

r ,+ ,.-: ++. • • + ; . '.

++ .' .



a proper representation of the behaviors of the particles.

The essential features wh_,nh characterize the specific aspso_J

of the. process, being lnvestisRted should be reproduced,

Bugltarello and Jackson I applied the random walk

method to the molecular diffusion in convective flow fleld8,

They showed that the use o_ a random walk technique yields.

solution to problems of molecular diffusion in a convective

flow field. They stated, "It has been shown for the laminer

flow that the random walk not only has the advantage of by-

passing the analytical eol_ltton of the problem, but also

allows for considerable insight into the physical process. ,

Both of these properties render the method a tool of poten-

tially great usefulness in the treatment of turbulent diffu-

sion problems". Results of a random walk study of tur-

bulent diffusion agreed very well with those given by Taylor*e

statistical theory of turbulent diffusion 1. Random walk

thus emerges as a good approach to ,the 8olutS'on of the
/

dll.ffusion problem.

In this study, the transport of suspended solid

particles under the influence of secondary flow will be

studied in a three dimensional convective flow field in

a corner of a straight rectangular channel. The 8eoondarl _

flow Is a circulatory action of the fluid around an axis

paraliel to the longitudinal axis of a ohanne !, while the

Prlnar7 flow _s s t_anslation of the flu_l parallel %o the

,Q



lon6itudinal axis of the channel. The combination of Primar7

and secondary flows results in a spiral motion. There are

two types of secondary flow: (1} secondary currents in

8tratght_ nonoiroular channel, and (2} secondary currents

at bends of a channel. In the present study only the first

type of secondary fiow, as shown in Fig, l-l, 1o considered.

0

• ". ,oA,_

/

FiK. 1-1 Secondary Currents in a O'orner of

a Straight Rectangular Ghannel

There are two principal objectives in this study.

The first objective t8 to build a 8tochastio model to re-

present the transport of suspended solid particles in oor-

nets of straight channels under the influenoe of secondary

flow, The second objective is to solve the developed dif-

fUsion equation (equation (2-14)) of suspended solid

particles by Monte Oarlo method, The 801ution will give

_e oo,u, oeut,,_,tlon of suspended --""" ---"" -" --. +O.LJL-q_IL ,,t,Pl_,J[" kJ-1_L+l,

. +

' m 4 m



II RANDOM WALK AND MONTE OARLO

• . 'i,. .

r

I

I *°

q

a model

As stated previously, random walk san be used as

of a _h_sioal phenomenons 0nee the model 18 built

the Monte 0arlo method san then be employed to simulate

ths physioal system and find solutions to a problem through

• .

the random samplinE technique. Thusp a oombination of ran-

dora walk and Monte 0arlo can provide solutions to oomplex \

problems _u fluid meohsnics whioh san not be solved by anal7-

tioal methodso

Ao Random Walk
i

Mathematioally, a stochastic prooesu san be written

as a colleotion of time-d_oendent rando_ variablss as fxlfllt_T_ *.'

that 18, a sequence of time dependent random variables.

{ }A discrete parameter stochastio process Xlkl,t_o,J.2;.. or a --.
• L.,

continuous parameter stoohaeti¢ prooesstXlt),_o 3 Is said to

be a Marker presses if, for _, < t_ <... < t,

IP[x(t.)_X. x(t,)=X,."" 3 ' •

where P denotes a oondittonal probability Notion.

A real number X is said tO be a possible Talus, or a state',

of a stoohastio prooess if there exists a time t in T mash

that the probability P [ X-h < X(t)_X t"1_,_ i8 positive "
j,

for an increment of X, h>0.

a otoohtotLo .

-5-

The sot of possible values oE
!
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process is called State space. A F_rkov process whose
i

state space is dlscrete is called a Markov Chain.
i i

f

i •

,,

A Markov process is described by a transigio_ ;

probability function, often denoted by'P (X+,_o ;_,i_ ;+)or

P ( _tlX , i. 1, which represents the conditional !probability

that the state of a system will at time t belong to the
t

e,_,.l,- _ ..-4-.....-,., .l,,.t,....,,m. _ -'--4--_ .,I., #'.,,,'li-_ -_

state X. In order to specify the probability law of _ ;
i

°.
I •

discrete parameter Narkov chain IX,} ', it suffices to state

for all times n_m_o, and states

mass function

"P_(-,,_= p [x,=_..l

J and k,.the probability

C_.-3)
I

!

!

and the conditional probability mass function
%

-P_,_(_.n)=PCx.-_Ix..,=D

[_ (2-3) d (2-4), since for all integers q,

p
r_<r_<...< ng, and states k, ,k,,..-,_

The function_jk (m, n) is called the transition probability

function of• the Markov chain. The probability law of a

M_rkov chain is determined by the functions in equations

and any q times

F,Cx,,,= _,,...,x,,}._t] = "P-A,(r,,)"P¢i.(_,,"-)I%,._,(,..,,)

•..I_,I.,_ (_,,_)

-6--

!

i _, ('2"-,5}
; i

;
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t

!
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i

A _arkov chain is said to be homogeneous, in time or

have stationary transition probability if

pends only on the difference n-re. Then,

to i
°,

P_k (m, n)'de -!

i

for any integer i

of the homogeneous Markov chain {Xn_ . In words, Pjk (n_
i

is the -conditional probability that a homogeneous Narkov!
i

chain now in state J will move_after n steps_to state k.'

The one-step transition probability PJk (I) are usually

written simply PJk, or

I

t _o.....(2-6) is the n-step transition probabillt_ funbtlon

; i

The transition probabilities of a Markov chain

tx_} with state s_oe {o, l, 2, .........J are best e_ibhtedi
in the form of a matrix:

p(m, n) =

?..,(:,_._) .p,,('m.n) ... 'P.,,C_,_)...

: : :

: : "

.in which _ne elements of a transition probability matrix

P (m, n)satisfy the conditions

i ,

"7-

I

i
I

I

('_,-9) ,
I

• i
; I

;

i i
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!

A. fundamental relation satisfied by the transition

probability funotlon of a Markov chain _Xn_ is the so-called
i

Chapman-Kolmogorov equation; for any time n>u_m>_o and

states _ and 1_.
i

A random walk is a Markov chain

(9.-1o)

fX.,. _-'_,!,.. "_ '
_,,--&,& j --_ _ • °4J

with the property iwhich consists of integer state spaces,

that if the system is in a given state.k then in a single

transition the system either remains at k or moves to ,one

•

of the states immediately adjacent to k. For example_ as,

in the one-dimensional case it can be represente_bya ,

transition probabilltymatrlx P as:

#

_o o o o ....

%, r, _, o o ...

o _, _ _, o ..-

: :
/

where,

_,. f_.=&;).,.,.

and

P (q) represents the

r

probability that the particle moves i_

t

posltive(negatlve)'dlrectlon.

represents the probability that the particleiremain,

at the same place.

' -,8-,
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Random Walk Model

•Particles

4

! t

! i

of the Transport of Suspende_ Solid

Let P .(x,,xz,x_, ,t)

i

i J

:be the Pr9bability : :_ i ...." :' i
#. . . , ,

G

J

that a partlclejwhioh at _. starts from the origin ( q, o ,:o)j'
I

arrives at the position (x,, x_,x 3 ) at t. P will lbe _alled z
0

the probability function of displacement'. Let Pj (_)!. denote

the probability that a particle moves in the positive ;(ne-

!

gative) Xj -direction. Suppose in each step a partlole
!

travels a dlstanoe A_ in the Xj-dlrectlonand the ti_e

interval between any two consecutive steps is _.

"/_ (X"_'xD
• ._ ___

x_

f
f

f
f

• • Cx,, xat-,_x_ . )%)

(x,*_x,_x.:x_) J" (xa,x_.x)-_j)

Sohematlc Diagram of Random Walk ModelFig 2-i.

Then, by total probability theorem;

_(x, ,x,._,._>=Z _'-'Pi _(x,t-'x_,_:-_:)• _i'

After rearranging, equation

form of difference equation:

where the inde_ j refers to the ooordlnates which varies. :

For example, when _= 2 _ F_(X_-_X_,_-_)= P(x, ,xa-_x_. x_-_)

(2-12) can be.rewritten L_ the ;

i

i•

i

-9-. ;



°

' In the llmltlns case, equation

, equation of paz_loles.

(2-'i3) beooaee, s dF, fferen't¼'l

=£
i=' __ -vi)

R.T. "_ ""

+]_e' diffusion coefficient.
i

in which _ represents the mean squ,_re

particles in the _ direction.

..... (2-15)

displacement of'

whloh is the mean displacement of particles in the Xj-.

direction and to called the "drift coefficient m.

Equation (2-16) is sho_ by Tohen 15. •

' In one dimensional ca_e, equation

a diffusion equation

_P == _, _--_x, "_

(2-i_) becomes

Cz-rO

!

- ... •
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i .

I

I

r
i.

where _i is called diffusion coefficient in an one dlmen_

Equation (2-18)slonal flow.

to give

P(x,_,).__ -!, _ e
d4_,_z

can be solved analytically '

X._, , i

In a steady uniform flow in the x -direction, P is

mhe
independent of z and t. Then^equation (2-14) becomes

-_-- a=P- - _- _=---P,P._P_---_-_.., v. _-__._P- ___ ___.P,_v_,v_'___.P
-" _X_ -:, ax$ _x= _^= -" _= ax_ _x3 " ":' ','ax,,

= 0 (_-_o')

which is analogous to the equation of particle concentration

- E: __-:-_._- E_ _c _e, _c _- - • + v _c i

where

• _._ =. 0

£_ _..(_ = the x_ & x_ -components of the diffusion

coefficlent for the transport of solid

!

particles ;

C = average concentration of solid particles

at a point_;

_:. = settling velocity of the representative

particle under the influence of gravity.: ."

= the x_ andl:_components Of the average se-

condary velocity at a point, which can be

either positive or negative in the fluid

I

,i

carrying solid particles.

- ii - I

i •

i

L_
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£bove Illustrations ehow that the transport of lUS-

pended solid parttolos san be represented by s random walk

model. 81nee the equation (2-14) san not be solved analy-

ttoa11¥, the Hosts Oarlo method neons to be the only possible

mesas for uses
I "

O. Xonte Oarlo Hetho4

The Monna..... Qa_,!o_ _,,.4._..,,_._...,,_-'_.o-one _,_.ch _a_J.le8

.\

the random sam-

piing teaohnlque In the treatment of either dsterutntstto

or probabtltstto problems, The random sampling lnoludess

(1) modeling the probability process to be sampled, (2) de-

siding how to generate random variables from the given pro-

bablltt¥ distribution In some effIotsnt ways and (3) applying"

varl_noe reduotnK teo_tquee, that to, methods of _noreaeing

the aoouraoy of the estimates obtained from the sampling

prOOOOSo

I

When differential equations san not be solved snaky-

tioally, the tmportanoe and value of a Honte Oarlo method

beoome appar_ent. _though equation _2-20) san be solved

by a nuaerloal method, Bush as the relaxation method, it

roquLres boundazTvaluee wh_oh _st be

•. . . .

"..,.

I7

.° /

,° • •



oxpo_nonto, ]Pu_thoemoro, tho rolontion lOthO4" _u not

ouS_b:Lo for nmohino oom]_t%on.

b

• • 0

O
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III STOCHASTIC MODEL OF

PARTICLES,

THE TRANSPORT OF SOLID

l

L

In this study the transport or motion of a solid

i

particle in a fluid is oonslde_ed to a_Ise as a _esult of

the superpositlon of the following two independent phenomena:

(i) random walk of the particle itself at the presence of

the fluid turbulence, and (2) action of the gravity force'

and the mean convective flow on the particle which is con-

sidered to be a deterministic process. In brief the stoch-

astic model of this study consists of random and determlnis-

tlo components, i

A. Random Walk of a Particle

Random walk can be used to simulate the normal

diffusion process. The random process of this system is

governed by the uniform or rectangular distribution proba_

bility law, that is, the partiol@ diffuse with, an isotropio

diffusion ooefflolent when the fluid is'macroscopicallyat

rest. The baslo step of random walk process of a partlole

consists of a constant length _ and a random direction, ,

Therefore, the positions of a particle that undergoes

random walk process car,. be dA_n_-_ by *_....,*^_,,_,........

model in Oarteslan ooordlnates, as shown by Fig. 3-I

I

/

t

, !



• / r

{X_4,, =(x_) L + L_I_'

( x_)_., = (x3) i , L_I_
wht,_

L,I.=9.
lJ-

0, L,2., ...

°

_ . "

Zn whloh

18 assumed to be a constant group mean value define4

as

It will be used as length unit in measuring quantities

of length dimension in order to preserve the generality

of the problem.

e and_are two independent random numbers whloh are

governed by a oertain probability distribution law.

They oan be generated eas_iy by a diK_l .aO_-_tiZ'.

For an lsota'op_o diffusion, they are govel_ed b_ the

• • ...- , . ,.o

e

,.. , • .

e •

I

L' , "
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un2form (or reotangular) probability distribution laws

In other wordet they vary uniformly from 0 to 260 (i, go

B. Mean Uonveot$vo Flow

The oonveotivo d_ffuelon prooeen in a corner
• B

of a straight ohannel t8 the transport due to the grawit T

force and primary and secondary flows. The suspended

solid partioles with dens_ties greater than that of

water have a settling velocity due to the gravity

foroeo The primary flow is a translation of the fluid

tn the longitudinal direction of a ohannel. The eeoond8_ I

flow is a oiroulatory motion of the fluid tn the plane

perpendicular to the primary flow.

Liggett, Ohiu and MSao i3 used an ourvilinear

orthogonal ooordinate system, as shown in Fig. _-2 in

deriving equations for seoondary velooitiee.

II /7_* _/ o._o90-_, _jeo,o.l,s oF

l__r //I l "-.-.-- Z_o_,.Is_ e,",,,=,':,,_k,,_,

x_a
I'lg, 3,,,ll Ooox,d,lNLto 8ysto,,e *(.

. • . •

-" !

.r



.I

The _-curves are made to represent th_ lsovels o£ the

primary flow and the_-ourves are orthogonal traJeotories
t

of the family of _ -curves. In such a coordinate s.ystem,
I

for a steady, uniform flow

flow velocity is

in the xcdirection, the primary

1. i i

!

: q

i

'v ,

i

I
1

depending on _only, the equation of motion is

and the equation o£ continuity is

i
T .

(3-3),

J

where

_spective l>,

Cool.lizzie tr_ns_ov_atio_ )

: de_si+y _ _h_ I I _ _u__

C3-4)

ehe average 8eco_d_-), veloci_/.

on +he _ _d _ coo_din_es

0
i •

t

|

i
i_hil_ e_uafion (_-4) ,sires

for secondary velooltles can be accomplished once the p_rl-

mary veloolty distribution and_x_h)are, determine_ i

" l? " 1

1



C

C

empirically, since the shear diRtrlbution can be obtained

from one primary velocity _istribution. It was show_ l_

that the vertical velocity profile of the prtBary flow

can be adequately represented by a simple power law.

v,, =

Liggett, Ohiu end Miao also used the following

equation to represent • famil_ of isovels of the prieary

flow

I

l,^i" ^_ )....

which 81yes its orthogon_ trajectories as

X_+2 .l-z.

(.
whereo_iS a constant to be determined empirically.

@rearer value of_ represents a greater curvature of the

family of isovele.

equationl

• The qcale factors can be derived fro,.
I

(3-8) and(3-9) As:

(x, x3/_3 _+i

I

SubetitutinE equations (3-10) and (3-1I)

(3-5) an4 (3-6 }, then

( _-Io_ •

into equations
l

I

÷ (x_ x_tIS' _+l

< iti4"t ) '._ ;K3

.1 / ,,'(3-I_'I

a_Ki

...... - 18 -
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t

I- X_ ¢+ ) ("

where the turbulent 8heRr_X,nan be obtained

where K 28 yon Karman'e constant

less for sediment laden w.)er).
t

Equations (_-7)and (_-1_) _tve

(0,4 for

calculatedSecondary flow velocities ten be

solution of equations (3-1P) and (3-13).

fron von rarnan"l

(_-H)

clear water and

(,

by nunerioaZ

©

'\
\

\.

v.n Resultant Stochastic Model

8uperposttton of the deterministic and pure random

components of the motion of a single solid particles, as

described previously, forms the followinK resultant sto-

chastic model, Let the position of a parttole at the end

then

()(,1_+|----_XI))_ d- J,,i]_ .4. Vx,] O_/_ _

.. , . " . ,

"--II--
. ++

+



|" •

where

average veloclt._ of primary flow at the point

the_ and _ _.nmponent8 ofoverage eeoonda17

velooity at the point ((x,)_0_)reepeo-

,_ively, which can be e_ther poe2tSve or

negatlve. .°

mm the oompon.nts of the settling velo-

oity of t_e partlcle In,and

dlreotlon respectlveiF.

/.,1%L_I_ _ L_I_ _---the X,,_ an_ _ -oouponente of the .pure
random motion of the pa_tiole duri_

the _th ,_'t_po

• for a uniform flow in the x-direo_iont

!

"

I

..



¢

,,j

I

where _,, _ and X4s are given by equation (3-2)

. "_'lJl is a constant time interval between two consecutive

steps. It can be determined _----*=t.'-.:._m__--_-__-__*_.-_,_

_,-_ ........ _-_ as the upper measureVul.tJ, _____ 1"="1_ _ -"

_ will 'be used as a time unit.

of oor_elation:. 16

We can see from equation (3-16) that the distance

by a partiole in eaoh step can be expressed as l

travelled
I

i

t'

I

I

She positions of a particle ink|,_d?ordinate_ can also

be expressed in oartesian ooordinates by a ooordinatei

transf o_ma_lon.

t



D. Group Motion of Solid Particles

In the present study the motion of a group

of solid partloles emitted from a point source is Studied
I

as well as that of a single partlole. The group motion
l

of pQ_tioles is ao=plex. However, In orde= to simpllf_

the p_oblem, the chemical =eac_lon and interaction amo_
i !

' t

l_rtic_es in the fluid are not considered in this stud_.

Each particle ls considered to behave independently.
t

I " "

or olou 

t

I'
t

B
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i

J
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...'.- IV DIGITAL CONPUTEE SIMULATION

The simulation of the developed stochastic model
i

was performed on the IBM 7090/1401 digital computer of :

were written in MAD (Michigan Algorithm Deoorder)la_uage.

I

I

Computer Program
!

_..

The computer program of the developed model _s
t

divided into two parts because of the limited computer storage.

The first program is for computing primary and secondary '

velocities and their derivatives with respect to _, and
t

at each. _-_ grid point. In other words, the output, of the
i

first program oonslsts of values of Vx: V_ .V_ ,_, _'_°_,._ '_'_a_

at each_-_ grid point. The output of the first program . ,

is then stored in magnetic tapes and serve as the ,input for :

the second program. The second program is written for :
: .1

computing the positions ofa particle after e.aoh time '_. ": :

perlod_:. The "flow charts of these programs are presented

Ai

in Appendix I. _
C

When the particle falls in. the .shaded area shown

in Fig. 4-1 a_ _ne end of the ith step, . vxlL , ,_i_ ,ql_

/

.(3-16) and (3-17) _._e'.consldered iqual.-..to p lnt p.
e

• %i

! | t



Fig. 4-1 Schematic Diagram of_-_ Grid Points
.

Then the position of the particle at the end of the

_ _.a_ _ _A_.Awm_ned from eouation (3-16).

i

t

I

( )th

B. Generation of Random Numbers

Random numbers are a sequence of numbers Whichl are

characterized by the property that, knowing some of the

numbers of the sequence, no other number in the sequence

can be predicated. Such numbers can be easily generated

by a digital computer, There are several random number

generators available in "Michigan Execute System "12. Each

random number generator is characterized by a particular

probability distribution law. For example, there are uni-

formly distributed random numbers generator and normal

distributed random numbers generator which are often used.
I"

The uniformly distributed random numbers generator was used

i in this study. It is a particular subroutineavaiiabie

in "Michigan Execute System". This subrgutine provides

I the means of generating random numbers,..uniformly distributed

over thein_er_l o __1.

°a.



e

O. Flow Pleld

The same three dlm_..ional 8ptral flow field in

s corner of a straight _e_ngular channel as in McSparran_s m

experiment was considered _n this study. In such a flow

cond_tion the the parametere_, c, n and k in equations (_-7)p

(2-8) aria (3-15) were determined to be 2.5, &.k3, 5.59

and 0.277 respeotlvely. These values were used In this

study for calculating secondary velocities. The maximum

primary flow was 4._5. It was also found that Yon Karuant8

formula for turbulent shear was valid only for _ values

greater than 0.16 when a( = 2.5 and that equation (_-8)

describe| the pr_ary lsovels very. well only In the reg._on

bounded byj_ =0., _ :0._ a.d _' "_.020. _erefore, this

study was ltmtt_ed _u the re_ton bounded bI_8 0.16,

• =

I

.o

• ". ,
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I



D. Resul_ of @oml_ter Slmulat_on

P

I. The path of a,,e_n_le particle

In order to understand in detail the transport

process of euepended solid particles in a three dimensional

spiral flow, it 18 desirable to investigate the path of

a single solid partlole. A calculated sample particle

path i8 shown in Fig. 4-2, which describes a hellcal

motion. Figs. 4_3i.4_-_, ._ and 4_5 6how _he p_ojec_ion 'of

the particle path on the xc_, X_x3andxF_ planes respectively.

The equations for the particle paths in the _-x_, xFx_and :

xFx_planes wore dote_inod by the mo_hod of leae_ isquare8.

I i '
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o lsopleth patterns

A typical set of results of computer simulation is

presented in Figs. 4-6 thro-_b A-)._. This set of results

is the Monte 0arlo estimates of the solutions of the diffu-

sion equation of solid particles (i, e, eq 2-1k). Shown

in the ftEure8, for a selected time and a distance interval

Axe, are the nunbers of particles Ni (in thousandths of the

source emission N) inside each 20 x 20 x 20 _rid. In other

words, Ni/N Is the probability that a particle insideeaoh

grid at the instant t. Points of equal Ni/N were connected,

for selected values of HI/N, by isoplethso The local con-

centration c can be obtained by dividing N1 by the volume _Yi

(= 20 x 20 x 20) of each grid.

FiE8.4-6 throuEh h-13 show isopleth patterns, which

represent a solution to a diffusion problea. Xt can be

seen that after t : 150 the iso Dleths are separated _nto

two different systems, in , m_nner quits similar to that

of Secondary flow "c_lls". a_ t_me increases, the par-
q

tiole distribution tends to become uniform, in other words,

the diffusion pattern tends to lose the menory of the source.

prooeas wezoana]_ysod,

This "_niform state is the necessary eondit_on for the appli-

cation of equation (2-21).

In addition to an examination of _sopleth pat_ez_u,

several s_atistioal 1_l_meters desoribin8 _he Air.sloe

"The nasa oent_lr of the ololld is .

• !
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described in Fig. 4-14, by _,, _,_, at a time t. Three

measures of the spread of the cloud are shown in Fig. 4-15.

A measure of the longitudinal spread of the cloud is given
I

. by the standard deviation _(x_ of the diffusing particles

about the mass center. The measures of the transversal and

vertical spreads of the cloud about the mass center are re-

presented by _(x_ and _-(x_. respectively. The ,best fitted

•line is determined by the least square method for each case, •

in Fig. 4-16 Xmax and Xmln l.,dl_. %h. --_" .4 .... _ the_W_ -L U_M_ _a.

most and least advanced particles of the cloud, oontrl-

butlng significant information concerning the diffusion

process, _ i

The computing time required to get the result forla plot

of isopleth pattern for t--lO0 and N=IO00 is about 160

minutes on IBM 7090 digital computer. The oompu_i_gtime

Increases as '_ or N Increases.

=5000 (as in Fig. 4-I_), the

1500 minutes.

_or example, for t-- 300" and

computing time is al_out

j !
I

l

i



¥ O0)IOI_;SlON
0

1. The stochastic model hoe given a solution to the

problen of _nitial phase of the transport of solid par=

ttoles in a corner of a straight rectangular channel,

This has led to a belief that the mechanic8 of the tranc-
e

port of solid particles in a corner of a .straight channel,

a8 deTeloped in this study by a stochastic process study, ,

le pron_oinK, & sugary of the theory established follovsJ

(a) The established stochastic model consists of

pure random and deterministic processes. The pure"

random process represents the random walk of the par*

tiole8 at the presence of the fluid turbulence.

,The deterministic process is represented the trans-

port of solid particles due to the gravity force

and primar_ and secondary flows.

f

i '

(b) A three dimensional diff_sion equation of solid

particles (1, e, eq (2-14)) has been developed by

randon walk method, Xt 18 a quite general diffusion

equation. The one dimens_onal diffusion equation

(eq 2-_t_) which can be found eas21_ _n the literaturs

and the sedinent diffusion equation (eq 2-_7) are

_usttwO partimalar oases of it,

" ••/ i _, .,*i •..... i'•,_ i ••

4



(o) The Monte Oarlo method can be employed to solve the

diffusion equation (eq 2-14). It appears that this

is the only feasible method at present (1966} to

solve (e_ 2-1&) wlthoutany experiential valueso .

(d) The motion

a spiral fern.
e

' sinEle particle is tn-fluenoed

makes its aotlon - "'° _
el _*d,6 ,,_6G

m

of a single diffusing particle exhibits

This indicates that the transport of a

by secondary flow whloh

C

(e) The diffusion of a cloud of solid particles emitted

from a point source results in a particle distribution

represented by isopieth pattern which !e quite similar '

to secondary flow "cells".

2. It is believed that the diffusion coefficient as defined

_n equation (2-15) and the time required to reach uniform

state, which are two important parameters of the diffUsion

process, san be determined by a further

veetigations will be carried

8tud_. These in-

out in a 8u_bsequent research.
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